目前人工智能(AI)正在变革多个行业。有一个很有趣的现象:人工智能正在帮助推动人工智能芯片的进步。早在2021年6月,谷歌就利用AI来设计其TPU芯片。谷歌表示,人工智能可以在不到6小时的时间内完成人工需要数月时间完成的芯片设计工作。《Nature》的一篇评论称这项研究是一项“重要成就”,并指出此类工作可以帮助抵消摩尔定律的终结。除此之外,英伟达已经开始使用人工智能来有效地改进和加速 GPU 设计;三星也已经谈论到了使用人工智能设计芯片。
但这远不是人工智能辅助芯片的*应用,AI技术正渗透到更多芯片业的核心环节,其中在制造这一芯片产业链的关键环节,AI也在悄然发力。
芯片制造环节,良率越来越受到考验
现在几乎所有的应用包括5G、物联网、汽车、数据中心等的实现与发展都建立在更高性能、更低功耗、更大算力的芯片的基础之上。芯片的需求大幅提升,而芯片的供应却跟不上需求,提升现有产品的良率是业内公认的有效措施。
然而,良率的提升却给芯片设计商和制造商都带来了很大的挑战。
制造是半导体产业链的关键一环。整个制造过程主要分为八个步骤:晶圆加工 - 氧化 - 光刻 - 刻蚀 - 薄膜沉积 - 互连 - 测试 - 封装,每个芯片的制造步骤又需要数百个工艺。芯片生产制造的周期动辄两三个月,生产过程中产生的数据量庞杂,涉及的参数变量繁多,任何一点微小的变化都能影响到最终芯片的良率。
遵循着摩尔定律的工艺制程演进是芯片实现高性能计算最为有效的途径之一,也是产业追逐的方向。而随着芯片工艺来到更先进的5nm、3nm,芯片设计复杂度呈几何倍数增加,生产流程的不断加长,芯片的制造变得极其复杂与精密,良率变得*挑战。据半导体设备供应商巨头应用材料公司表示,从2015年到2021年,芯片制造的工艺步骤的数量增加了48%。相比成熟节点,先进节点的基准良率也越来越低。
而在半导体的商业化进程中,良率直接关系到芯片的产量、生产成本与企业的盈利能力。所以说,仅仅通过芯片工艺技术的改进来提高PPA变得越来越困难,而且从性价比来看,芯片流片的费用越来越贵,只有极少数的芯片公司才能负担得起。
因此,既要提升芯片的良率又要在经济上可行,必须要多管齐下,探索创新的方法。在如今这个高度自动化的时代,引入人工智能/机器学习等技术,推动芯片的制造流程,提升芯片的良率,进而帮助我们快速弥合算力供需之间的差距。
AI的强势出击
芯片制造是世界上最昂贵的生产工艺之一。芯片产量决定了诸如英特尔、三星、台积电等晶圆厂商的成败。他们不惜投入大量资源来使晶圆厂全天候运营,以实现长期利润*化。
半导体制造商需要依靠扫描、测试和诊断来帮助故障分析以解决良率问题。后端的缺陷检测无疑是提升芯片良率的一大“把关者”。现在大多数先进的SoC使用了极小的制造工艺,有的甚至引入EUV光刻技术,对制造商来说更加难以定位芯片上的微小故障和缺陷;并且在制造3D结构和执行复杂的多图案化步骤时,其中一些小的差异会累积以产生良率抑制缺陷,如果其中的一些微小的差异被延迟检测到,那么之后进行的所有流程步骤基本上都是浪费时间和金钱。他们发现缺陷的时间越长,损失的钱就越多。
为了解决这一行业难题,半导体设备供应商应用材料(Applied Materials)将人工智能融入到晶圆检测流程,从2016年开始应用材料就使用ExtractAI技术开发Enlight系统,于 2020 年推出了新一代Enlight光学半导体晶圆检测机,该检测设备引入了大数据和AI技术。Enlight 系统只需不到一个小时就可以绘制出晶圆上数百万个潜在缺陷。